An Avant-Garde Professorship of Neurobiology in Education: Christofredo Jakob (1866–1956) and the 1920s Lead of the National University of La Plata, Argentina

ZOE D. THÉODORIDOU, 1 ATHANASIOS KOUTSOKLENIS, 1 MANUEL DEL CERRO, 2 AND LAZAROS C. TRIARHOU 1

1Neuroscience Wing, Department of Educational and Social Policy, University of Macedonia, Thessaloniki, Greece
2Departments of Neurobiology & Anatomy, Ophthalmology, and Neurology, University of Rochester, Rochester, NY, USA

The interdisciplinary trend in “Mind, Brain, and Education” has witnessed dynamic international growth in recent years. Yet, it remains little known that the National University of La Plata in Argentina probably holds the historical precedent as the world’s first institution of higher education that formally included neurobiology in the curriculum of an educational department, having done so as early as 1922. The responsibility of teaching neurobiology to educators was assigned to Professor Christofredo Jakob (1866–1956). In the present article, we highlight Jakob’s emphasis on interdisciplinarity and, in particular, on the neuroscientific foundations of education, including special education.

Keywords Christfried Jakob, cerebral onto-phylogeny, history of neuroeducation, neurophilosophy

Introduction

Some of the earliest attempts at applying neurobiological findings to education can be traced to the work of the neurologist Henry Herbert Donaldson (1857–1938) and the educator Reuben Post Halleck (1859–1936; Théodoridou & Triarhou, 2009). The new tools of biology and cognitive science have generated vast possibilities for this field, enabling the integration of diverse disciplines that study human learning and development (Fischer et al., 2007). Terms used interchangeably to denote this new branch of knowledge include “neuroeducation” (Battro & Cardinali, 1996), “neurolearning” (Petitto & Dunbar, 2004),...
“nurturing the brain” (Ito, 2004), “developing the brain” (Koizumi, 2004), “mind, brain, and education” (Fisher et al., 2007), “educational neuroscience” (Geake, 2005; Szüks & Goswami, 2007), and “pedagogical neuroscience” (Fawcett & Nicolson, 2007).

The dynamic growth of “neuroeducation” and the opportunities for interdisciplinarity are evidenced by (a) the establishment of academic programs and departments, such as the “Centre for Neuroscience in Education” at the University of Cambridge, the “Mind, Brain, and Education Program” at the Harvard Graduate School of Education, and Dartmouth’s “Center for Cognitive and Educational Neuroscience,” (b) the emergence of the “International Mind, Brain and Education Society” and the launch of its official journal in 2007, as well as the launch of another new journal in 2012, the Trends in Neuroscience and Education, (c) the organization of congresses, meetings, and seminars at both the international (European Association for Research on Learning and Instruction, Zürich, 2010; International Mind, Brain and Education Society, Philadelphia, 2009, San Diego, 2011) and local levels (Collaborative Frameworks for Neuroscience and Education, UK, 2005–2006), and (d) the attention received in the mainstream press and by the lay public (see also Beauchamp & Beauchamp, 2012).

There are additional examples of the worldwide impact of the neuroeducation movement. In the United Kingdom, the Teaching and Learning Research Programme administered by the Economic and Social Research Council (TLRP-ESRC) organized a seminar series on Neuroscience and Education which brought together national and international education and science experts to discuss how these two areas may collaborate. At its conclusion, in June 2006, over 400 teachers, educational researchers, psychologists, and neuroscientists had participated in the series. In Germany, the Federal Ministry of Education and Research found it reasonable to concentrate on the latest line of research in educational neuroscience to improve education (Stern, 2006). In Finland, a national network on neuroscience and education hosted its activities in the University of Helsinki, beginning in 2009, under the theme “The Brain, Learning and Education Network.”

Still, it remains a little known fact that the National University of La Plata in Argentina holds a historical precedent as most likely the world’s first institution of higher education that formally introduced and included neurobiology in the curriculum of an education department. It was Christfried Jakob (1866–1956; Figure 1), a Bavarian-born neuropathologist, who promoted the initiative to teach brain structure and function to students of the Faculty of Philosophy and Letters as early as 1922.

Prior to 2006, a literature search in the PubMed database would yield no returns on Jakob, save an article by Meyer in Spanish (Théodoridou, 2011). Since 2005, a systematic effort began by one of us (LCT) and his colleagues to retrieve and revive Jakob’s writings; this ongoing project has aimed at placing Jakob’s ideas in a modern neuroscientific perspective (Théodoridou & Triarhou, 2011, 2012a, 2012b; Triarhou, 2008a, 2008b, 2009, 2010a, 2010b; Triarhou & del Cerro, 2006b, 2006c, 2007; Tsapkini, Vivas, & Triarhou, 2008; Vivas, Tsapkini, & Triarhou, 2007). In the present study, we review Jakob’s contributions to education, an endeavor that he pursued throughout his career.

Jakob’s Professional Life

Jakob (his forename castillianized to “Christofredo”), the founder of neuropathology in Argentina, adopted that country as his home and lived there from 1899 until his death in 1956, with only a brief visit to Europe from 1910 to 1912 (Moyano, 1957; Fumagalli & Saredo, 2005). He was recognized for his neuroanatomical work, particularly for the systematization of brain sectioning and the application of the Weigert method to the study of
myelinated fiber tracts (Allegri, 2008). He authored 30 books and 200 articles on developmental, evolutionary, anatomical and pathological neurobiology (Figure 2; Triarhou & del Cerro, 2006c). His approach was largely based on studying species of Argentinian fauna (Papini, 1978, 1988). For example, his theory on the phylogenetic origin of the neocortex (Jakob, 1945) issued from his histological studies on *Amphisbaena*, a small apod reptile (Papini, 1988). Jakob is credited with combining phylogenetic, embryological, and functional approaches in a quest to explain the role of the cerebral cortex in cognition and behavior (Triarhou, 2008b). From such an attempt ensued his theory of a dual developmental-evolutionary origin and ubiquitous sensory-motor function of the cerebral cortex (Jakob, 1911, 1912a, 1912b; Triarhou, 2010b). He further studied and highlighted the fields of neurophilosophy, affective neuroscience, and educational neuroscience (Triarhou, 2008a; Théodoridou, 2011). He did so based on his collective academic, clinical, and research experience from multiple vocational frameworks, including universities (National University of Buenos Aires and National University of La Plata), hospitals (Las Mercedes Hospital in Buenos Aires and National Psychiatric Hospital for Women in the Federal Capital), and research laboratories (Laboratory of the Psychiatric and Neurological Clinic of Las Mercedes Hospital, Neuropathological Institute at the National Psychiatric Hospital for Women in the Federal Capital, and Institute of Biology at the Faculty of Philosophy and Letters of the National University of La Plata; Triarhou & del Cerro, 2006b, 2007).
His work can be roughly divided into three periods, each having a slightly different focus. Jakob shared the “early period” of his work (1890–1912) between Germany and Argentina, carrying out anatomical studies (Théodoridou & Triarhou, 2012a). During his “middle period” (1913–1935), he developed his psychobiological ideas (Théodoridou & Triarhou, 2011). In the “late period” (1936–1949), he formulated a neurobiophilosophical synthesis (Théodoridou & Triarhou, 2012b).

Overall, Jakob realized the essence of the current definition of the mind, brain, and education convergence, that is, “the integration of disciplines that investigate human learning and development bringing together education, biology, and cognitive science” (Fischer et al., 2007, p. 1) as his life’s paradigm. In 1899, at 33 years of age, Jakob had already attained renown after publishing a handbook of neuroanatomy and neuropathology that was translated in multiple languages (Triarhou & del Cerro, 2006b). In that year, he accepted an offer by Domingo Cabred (1859–1929), the Argentinian Professor of Psychiatry, to take over the organization of the Laboratory of the Psychiatric and Neurological Clinic of the Hospital of Las Mercedes at the National University of Buenos Aires (Orlando, 1966). The prospect of having 300 brains available for pathological study on an annual basis was a key factor that influenced his decision to leave Germany for South America (López Pasquali, 1965). Thus, he moved to Argentina, having signed a three-year contract.

During that time, he struggled to transform his innovative ideas into action. Already in 1906, encouraged by the visionary Minister of Public Education, Joaquín V. González...
(1863–1923), Jakob asked for permission from the University of Buenos Aires to introduce a new course under the title “The Nervous System and its Relationship to Education” (Orlando, 1966). However, he met with resistance, and it took several years for such an initiative to be effected. (It is not surprising that even in the past, the idea that neuroscience is or should be an important aspect of educating educators often sounded foreign to pedagogues or psychologists, who, not knowing a neuron from a glial cell, had little interest in neurobiology and avoided any serious study of the brain like the plague. The attitude that neuroscience was irrelevant for educators, other than as a subject matter to be taught by someone else, and the predilection exclusively for behavioral and psychological theories and practices are fortunately waning.)

The “Universidad Provincial de La Plata” was inaugurated on April 18, 1897 under the Administration of Dr. Guillermo A. Udaondo (1859–1922), Governor of Buenos Aires, with Dr. Dardo Rocha (1838–1921) serving as Rector. The University of La Plata became nationalized by Act 4609 of Congress and by Provincial Law on September 29, 1905. When González was appointed its President the following year, he integrated several municipal scientific institutions into the university and brought substantial change by placing an emphasis on experimental and natural science methods (González, 1905). For example, he introduced modern academic physics to the country (Glick, 1996).

Jakob held faculty positions at the University of Buenos Aires from 1913 to 1944 and at the University of La Plata from 1922 to 1933 (Papini, 1988). In 1912, the Faculty of Philosophy and Letters of the University of Buenos Aires created a Professorship of Biology in an attempt to enhance the scientific status of the School (Nazar Anchorena et al., 1927; Orlando, 1966). Jakob was then appointed Professor and assumed the task of building a solid biological basis for psychological and philosophical studies (Talak, 2008). The reverberation of the success of Ramón y Cajal in the Hispanic world and his Nobel Prize award must have played a part in the emphasis placed by the University of La Plata on the brain sciences. For instance, in 1906, the Archives of Pedagogy (official journal of the Faculty of Education) published in the inaugural volume two papers by Cajal on the

1González was admitted into the Real Academia Española, the Royal authority on the Spanish language, in 1906, and was elected to the Argentine Senate in 1916 (while still President of the University). Retiring from the latter in 1918, he returned to the University of Buenos Aires, where he taught Constitutional Law, Public Law, and a course in the History of Foreign Relations of Argentina. He contributed regularly to La Nación as a columnist and translated Rabindranath Tagore’s One Hundred Poems of Kabir. He joined the International Law Association in 1919, and advocated on behalf of the League of Nations, as well as U.S. President Woodrow Wilson’s efforts towards its ratification by a recalcitrant Senate. His most controversial work, Patria y Democracia (Fatherland and Democracy), was published in 1920 and delved into regional and political tensions in Argentina. González’s efforts on behalf of the League of Nations helped lead to his nomination to the International Court of Justice at The Hague, becoming a member in 1921. González died in Buenos Aires in 1923; he was 60. Fábulas Nativas, a work of cultural anthropology, was published posthumously in 1924, and González left a bibliography of over a thousand works, including 50 books on a variety of academic subjects.

2Rocha was an Argentine naval officer, lawyer, and politician best known as the founder of the city of La Plata and of the University of La Plata. La Plata was planned by the architect Pedro Benoit in a regular pattern of diagonals and precisely placed squares. His success in La Plata led the Governor to seek his party’s nomination for the presidency in 1886. Rocha was a well-known, well-connected, and persuasive candidate who had secured his place among Argentina’s paramount “Generation of 1880” but lost the nomination to Miguel Juárez Celman, the Governor of the Province of Córdoba and President Roca’s son-in-law.

3The Anchorenas were one of the most traditional, socially prominent, and richest families of Argentina. There was a saying: “Rich as the Anchorenas.”
morphology and connections of nerve cells (Ramón y Cajal, 1906a, 1906b). The inclusion of highly technical neuroanatomical papers in a purely pedagogical journal is in itself a remarkable act. The following year, on December 14, 1907, the Science Museum of the University of La Plata bestowed Cajal the title of “Honorary Academician” (Ramón y Cajal, 1988, p. 628).

In 1913, Jakob published the “Atlas of the Brain of Mammals of Argentina” in collaboration with Clemente Onelli (1864–1924), the director of the Buenos Aires Zoo. Jakob and Onelli (1913) intended to establish the biological basis of mental phenomena, underscoring that psychology would either use the comparative method in studying nervous function and structure, in order to shed light on psychological phenomena, or it would be limited to the descriptive method (Papini, 1988). Eventually, in 1922, the National University of La Plata appointed Jakob as Professor of Neurobiology at the Faculty of Humanities and Educational Sciences (Triarhou & del Cerro, 2006c), rendering him one of the first academic teachers of neurosciences in a department of education (Figures 3 and 4). In fact, his course “Anatomy and Physiology of the Nervous System” (Figure 5) was taught in freshman year to the future teaching workforce of the country (Gotthelf, 1969).

Jakob’s insight into the evolutionary basis of behavior, founded on his research in comparative developmental neuroanatomy, became known and cited. In one of the early textbooks of biological psychology (translated in French and German and prefaced by Wilhelm Ostwald, Nobel laureate in chemistry), the philosopher-psychiatrist José Ingenieros (1877–1925) credits Jakob and the palaeontologist Florentino Ameghino, along with Ramón y Cajal, van Gehuchten, Golgi, and von Lenhossek, for their fundamental discoveries in the anatomy and phylogeny of the nervous system (Ingenieros, 1922; Triarhou & del Cerro, 2006a). In the postscript to his autobiography, the great Ramón y Cajal (1988, p. 602) acknowledges Jakob (1922) among the foreign scientists of prestige who contributed to the two-volume Festschrift on the occasion of his retirement at the age of 70, including the Vogts, Loeb, Herrick, Sherrington, von Monakow, Marie, Houssay, and numerous others. Finally, in their monumental Cytoarchitectonics, von Economo and Koskinas (1925) argue that future research on the human cerebral cortex will have to be based on the work of three of the most important cortical neuroanatomists, that is, Theodor Kaes, Ramón y Cajal, and Christfried Jakob, whose ideas on cortical phylo-ontogeny they call ingenious.

In the capacity of Professor of Neurobiology in the School of Humanities and Educational Sciences, Jakob epitomized the neuroeducational idea through his teaching and research activities, discussed next.

Teaching Neurobiology to Educators

In considering the fervent growth of Educational Neuroscience, we note that the attempt to bridge neuroscience with the humanities goes back more than a century. The books of Donaldson (1895) and Halleck (1896) were published at the same time as Jakob’s first atlas of the normal and pathological nervous system (1895). We do not have any evidence that Jakob was aware of Halleck’s or Donaldson’s books. Nevertheless, some years later he laid a new stone in the formation of Educational Neuroscience.

Throughout his career, Jakob defended the dissemination of neuroscientific knowledge into the humanities. He dealt with that topic in his Documenta Biofilosófica (Biophilosophical Documents; Jakob, 1946). He developed his rationale as follows (Théodoridou & Triarhou, 2012a): First of all, life sciences form a justified basis for an
Figure 3. Roster of administrative officers and members of the Faculty of Humanities and Educational Sciences, National University of La Plata (Nazar Anchorena et al., 1927, pp. 20–21). The faculty roster includes some remarkable names. The Dean, Doctor (probably Law Doctor) Ricardo Levene, professor of Argentinian History and Sociology, was the author of the most respected and widely read *Historia de la República Argentina* available in the midtwentieth century. Alejandro Korn (1860–1936) was an Argentine physician, psychiatrist, philosopher, reformist, and politician. For 18 years, he was the director of the psychiatry hospital in Melchor Romero (a locality of La Plata in the province of Buenos Aires), named for the city. He was the first university official in Latin America to be elected, thanks to the students’ vote. He is considered the pioneer of Argentine philosophy. Along with Florentino Ameghino, Juan Vucetich, Almafuerte, and Carlos Spegazzini, he is considered to be one of the five wise men of La Plata. He was still remembered with respect in the university days of one of the authors (MdC) as a man of extraordinary culture and liberal ideals. Rafael Alberto Arrieta was one of the best known and respected writers around 1945–1964 (MdC). Leopoldo Lugones: If Arrieta was the man of letters that saw the present and dreamed the future, Lugones was the man that saw the present and wanted to live in the past. A respected poet, we reluctantly have to admit. His son Leopoldito, as he was sarcastically called, became the chief torturer of the Argentinian police, or so it was said. Apparently he wanted to restore “la Argentina de la Cruz y de la Espada.” From the private archive of L. C. Triarhou. Copying, redistribution, or retransmission without the author’s express written permission is prohibited.

Objective, rational, and scientific development of philosophical orientations (Jakob, 1946). Thus, the scientific field that studies nervous structure and function is indispensable for psychology and its related sciences. Further, knowledge of the evolution of the human brain in correlation with cognitive development, as well as brain alterations and their sequelae on memory, behavior, language, and other abstract processes, forms the natural foundation of a conscious learning science, as the creation and preservation of higher cognitive functions (intellect, volition, and emotions), instincts and reflexes depend on human cerebral organization. Thus, Jakob called for a learning science aware of the biological mechanisms that underpin learning.
In a commentary on “The Function of Biology in a Faculty of Philosophy and Letters,” Jakob (1942) argued that future teachers and professors, aware of their highest mission, ought to know the fundamental facts of brain development as well as the physiological capacity of its mentality and disorders, because development and its dynamics form the anatomical-physiological substrate of their instructional efforts.

Jakob presented these ideas in a monograph on the frontal lobe, which he characterized “rather as a plan for future research and not as an essay with solutions” (Jakob, 1943b, p. 9). Recognizing the “humanizing” role of the frontal lobe, he described the meaning of its dynamics for science and philosophy (Théodoridou & Triarhou, 2012b).

The fact that the human frontal cortex covers about 30% of the total cortical surface generated the hope that unravelling its function might eventually explain human behavior (Raichle, 2002). Jakob (1906) viewed the major part of the frontal lobe as a central station with multiplier and combinatorial characteristics, constantly receiving stimuli from all the motility organs via multiple pathways. The role of the frontal lobe in integrating information from multiple brain areas supports its crucial involvement in learning, comprehension, and reasoning (Baddeley, 2002). According to Fuster (2006), actions related to human behavior, reasoning, and language are organized by means of interactions between prefrontal and posterior networks at the top of the “perception-action cycle.” Jakob placed in the frontal lobe the centers of experiential accumulation that results from personal intervention, elaborated progressively for elemental and higher human skills and stimulated by affective states.
In particular, Jakob explained the relation of the frontal lobe to education as follows:
“The development of a social intelligence that will reinforce individual inclinations and will put emphasis on the active engagement of the student in the formation of concrete knowledge issues from the importance of frontal lobe functions” (Jakob, 1943b, p. 140).
As a result of the progress in the brain sciences in recent decades, traditional philosophical questions have been steered in new directions (Churchland, 2008), inviting a broad and divergent body of scientists to work together. Following philosophy, education has been enriched with new information stemming from the neurosciences.

For example, imaging studies pinpoint to neural systems that are responsible for the acquisition of reading skills and further support the idea that we can remedy inefficiencies in those systems through intervention; behavioral outcomes are accompanied by neural changes in the expected areas (Goswami, 2006). Concerning arithmetic, the finding that the brain has a preferred mode of representation bears directly on the teaching of mathematics: It suggests that teachers should build on this spatial system when teaching ordinality and place value. Other aspects of education that have been informed by neuroscience include second language learning, lifelong learning, and early learning (Blakemore & Frith, 2005).

However, a fair and fruitful dialogue among the sciences presupposes a minimum amount of knowledge and familiarity. The current demand for educators’ literacy in neuroscience seems very attuned with Jakob’s arguments (Ansari & Coch, 2006).

In a survey of teachers, almost 90% thought that knowledge of the brain was important, or very important, in designing educational programs (Pickering & Howard-Jones, 2007). In 1999, the Teaching and Learning Research Programme (TLRP) commissioned Blakemore and Frith to review neuroscientific findings that might be of relevance to educators. At the same time, a project on “Learning Sciences and Brain Research” was launched by the Centre for Educational Research and Innovation (CERI) at the Organisation for Economic Cooperation and Development (OECD). Major research and funding institutions from all over the world took part in that attempt: the Sackler Institute (United States), the University of Granada (Spain), and the RIKEN Brain Science Institute (Japan); the National Science Foundation (United States), the Lifelong Learning Foundation (United Kingdom), and the City of Granada (Spain); and INSERM (France) (OECD, 2001). The first phase of the project (1999–2002) brought together international scientists to review the potential implications of brain research for policy makers. The second phase (2002–2006) focused its activities on three areas: literacy, numeracy, and lifelong learning (Howard-Jones & Economic and Social Research Council, 2007).

Brain Topics, Psychological Theories, and Educational Implications

The potential cross-fertilization of neuroscience and education and its inherent limitations are one of the main points of discussion in the educational neuroscience literature (Beauchamp & Beauchamp, 2012). The production of “usable knowledge” (Christodoulou, Daley, & Katzir, 2009, p. 65) has proven a demanding task for researchers, as it entails an innate danger of misapplication, that is, oversimplification, misunderstanding, or generalization of scientific data (Beauchamp & Beauchamp, 2012).

Jakob’s elaborations form a justified basis for educational implications, given that they cover multiple aspects of learning, both horizontally (evo-devo processes, normal and pathological conditions, structure, and function) and vertically (in-depth analyses and formulation of original theories). In addition, one of the most influential schools of educational thought, that is, the Piagetian, is based on a cognitive theory with biological roots.

Piaget (1964) argued that learning is subordinated to development. In a similar line of thinking, Jakob held the firm belief that cognitive and socioemotional development go hand in hand with cerebral development in a course he termed “psychogenesis” (Jakob, 1913,
Thus, he explored its evolution and development in his neurodynamic postulate (for reviews see Théodoridou & Triarhou, 2011, 2012b).

Jakob’s theory on cognitive development could have impact on the formulation of learning theories and practices, as the quest for a mutual understanding among cognitive scientists, neuroscientists, and educators is at the epicenter of current research.

In Jakob’s neurodynamic theory, every system is an arc or circuit, composed of long ramifications or afferent and efferent pathways, “macrodynamics” of charge and discharge, and of a center or an inserted formation of increasing complexity, comprising cells and short fibers that constitute the “microdynamics” or “associative and commissural systems” (López Pasquali, 1965). The first macrodynamic circuit (reflexes) is only capable of responding in an instant and invariable form. The second macrodynamic circuit (instincts) preserves the information and mounts it up through discharges. In the third macrodynamic circuit, any entering or exiting element becomes registered and furthermore interacts interfocally. Such a system subserves the emergence of “psychism,” that is, “the neurobiophylactic complex of neuroenergetic reception, assimilation and reaction, which regulates the organism’s vital necessities against variable factors in the external and internal milieu” (Jakob, 1939, p. 8). Psychogenesis crescents in the “neopsychic” stage. Then, three kinds of neurocognitive processes occur: (a) gnooses, which secure the conscious orientation in one’s environment; (b) praxes, which underlie active individual intervention; and (c) symbolisms, which subserve the communication of abstract ideas by means of human language (Jakob, 1919, 1921, 1935).

Treating Developmental Disorders

One of the most important of Jakob’s contributions to education is his effort to establish a biological treatment theory for developmental disorders (Théodoridou, 2011). Jakob (1913) viewed mental retardation as the result of a degenerative psychogenetic process that necessitates a biological treatment. Thereby, the introduction of principles for a biological classification with practical and functional value would be meaningful. Jakob condemned the existing classifications as insufficient and ineffective for the formulation of both psychological and educational intervention.

Still, he acknowledged the contribution of existing classifications (clinical, anatomo-pathological, and educational) to psychology, medicine, and education, respectively. However, he stressed the importance of a functional connection between these aspects on the grounds of the dynamic nature of mental retardation. He noticed that each of those aspects and their interactions may influence prognosis in a child with mental retardation, for example, the time of onset of a disease, the extent of a lesion, individual differences, and the amount and quality of educational opportunities.

On that basis, Jakob (1913) divided normal cognitive and socioemotional development into the following psychogenetic stages (see also, Théodoridou, 2011):

1. “Psychobiomolecular stage,” characterized by the irritability of the protoplasm.
2. “Psychoneuromolecular stage,” when elementary nervous organization is not differentiated, although there is a nervous irritability.
3. “Elementary psychoreflexive stage,” signalled by the differentiation of the reflexive, the nuclear, the spinal, and the bulbar systems.
4. “Complex psychoreflexive stage,” when the successive maturation of instincts, impulses, and subcortical arcs is realized, along with the differentiation of afferent and efferent arcs.
5. “Crepuscular stage,” when the reflexes and functions such as respiration, sucking, some movements, and mimicry dominate as primary, diffuse, and preconscious cortical perceptions.

6. “Stage of provisory psychological fixations”:
 a. “Stage of elementary temporary fixations,” when the superior instincts, affects, active mimicry and combined voluntary perceptions and actions first appear;
 b. “Stage of complex temporary fixations,” when elements of articulate language, concrete ideas, orientation in the environment in terms of space and time as well as affective and voluntary actions emerge.

7. “Stage of definitive psychoenergetic associations”:
 a. “Stage of permanent concrete associations,” when an egocentric realism, the formation of personality, actions of affective inhibition, elementary consciousness, as well as the perception of time, space, and causality are observed.
 b. “Stage of elementary abstract associations,” when the conscious personality is formed with elements of self-critisism and egoism; judgment, reasoning, and acts of intellectual inhibition are also evident in this stage of infantile analytic empiricism.

8. “Puberty,” when the synthesis of ideas is possible, and aesthetic and ethic tendencies are evident.

Jakob’s designation of egocentric realism precedes once again a Piagetian concept (see also, Théodoridou & Triarhou, 2011, 2012b). Piaget (1926, 1932) introduced the concept of egocentrism in his early writings (Light, 1983). The roots of the concept of egocentrism can be traced back to Freud’s influence on Piaget, in particular on Freud’s concepts of the “primary process” (i.e., the mode of functioning in service of the immediate gratification of needs) and the “secondary process” (i.e., the regulation and control of needs to attend to the demands of reality; Kesserling & Müller, 2011). Piaget (1920) initially distinguished between autistic (i.e., symbolic) and logical, scientific thought. Piaget’s (1920) notion of autistic thought is derived from Bleuler and is much different from the contemporary use of this term as a designator of a particular developmental disorder (Kesserling & Müller, 2011). The pleasure principle dictates autistic thinking that is “personal, incommunicable, confused, undirected, indifferent to truth, rich in visual and symbolic schemas, and above all, unconscious of itself and by the affective factors by which it was guided” (Piaget, 1928, pp. 204–205). Later, Piaget introduced the concept of egocentrism as an intermediate level between these modes of thought. However, Piaget’s study of his own infants led to a revision of the concept of egocentrism, which from the mid-1930s was conceptualized as a phenomenon that recurs at the beginning of different developmental stages.

Jakob (1913) viewed developmental disorders as energetic and dynamic conditions defined by multiple components. Thus, he stressed the importance of elucidating the internal and external causes of developmental cognitive arrest and their complex consequences on cerebral growth. He maintained that such knowledge would help scientists to contain the extent and severity of the factors that compromise the learning powers of the brain.

Apart from their biological characteristics, in his 1913 article, Jakob further provided the psychological profile that corresponds to each stage. He maintained that “degenerative psychogenesis” runs through the same stages as normal psychogenesis. He further made suggestions for suitable interventions, according to the stage that the child with disabilities falls into. Finally, Jakob discussed the concept of patopedagogía (“pathopedagogy”) long before the fields of special and remedial education were formally introduced (Théodoridou, 2011).
In 1940, Jakob, in collaboration with Antonio Scaravelli, published a study of eight siblings from Tupungato with familial mental retardation, deafness, and spastic quadriplegia (Jakob & Scaravelli, 1940). Maintaining his interest in disability, Jakob dealt with heredity factors that cause pathological characteristics both from a neurological and from a socio-anthropological viewpoint.

Until the end of the eighteenth century, charity rather than education served as the underlying guidance for any special provisions for disabled children (Winzer, 1993). Afterwards, some sparse attempts were made for a methodologically sound, science-informed special education by pioneers such as the French physician-educator Jean Marc Gaspard Itard (1774–1838), the French psychologist Eduard Seguin (1812–1880), the Italian physician-educator Maria Montessori (1870–1952), the Belgian teacher and psychologist Jean-Ovide Decroly (1871–1932), and the Soviet defectologists Aleksandr M. Shcherbina (1874–1934), Lev S. Vygotsky (1896–1934), and Ivan A. Sokolyanskii (1898–1960).

The demand for a neuroscience-informed special education (Goswami, 2004) ensued from the unification of the mind, brain, and education sciences under modern attempts defined as neuroeducation (Battro, Fischer, & Léna, 2008) and educational neuroscience (Petitto & Dunbar, 2004; Szüks & Goswami, 2007). Learning and education can be viewed as a new field of the natural sciences with the entire human lifespan as its subject, including various problems such as fetal environment, childcare, language acquisition, general and special education, as well as rehabilitation (Koizumi, 2004). In this line of thought, Ito (2004) suggested that research should aim at providing new knowledge about the pathogenesis of developmental disorders on the solid basis of neuroscience. New knowledge should aid the appropriate assessment and treatment of patients, based on an accurate identification of individual-specific deficiencies, and environmental factors that might prevent children from behaving appropriately. Therefore, it would be helpful in solving problems rooted in antisocial behaviors of students. Further advantages of the adoption of a biological perspective include the timely diagnosis of special educational needs, the monitoring and comparison of the effects of different kinds of educational input on learning, and an increased understanding of individual differences in learning, and the best ways to customize input to the learner (Goswami, 2004).

Conclusion

A polymath, Jakob contributed original ideas to diverse aspects of education and pedagogy. Jakob’s organizational skills have been considered exceptional (Papini, 1978). Throughout his career, Jakob became heavily involved in the organization of services, laboratories, clinics, and academic departments (Jakob, 1916, 1937, 1943a) and is credited as the father of Argentinian neurobiology and neurology (Orlando, 1966; Triarhou & del Cerro, 2007), having established an intellectual lineage of distinguished researchers and clinicians that included José Ingenieros, Braulio Moyano, and many others.

With his deep understanding of human brain function, he shed light on cognitive development and consciously aimed at the enhancement of learning theories and practices. Jakob further promoted the right of handicapped children to an appropriate education, paving the path for the grounding of special education on a scientific basis (Jakob, 1913). Impressively, he put forth the idea of teaching a course on “The Nervous System and Its Relationship to Education” as early as 1906. Although such a ground-breaking idea did not find fertile soil right away, eventually, in 1922, he became one of the first academics to formally teach neurobiology in a School of Education, at the National University of La Plata in Argentina.
Thus, Jakob introduced fundamentals of neuroeducation many decades before the discipline was formalized. At the same time, the National University of La Plata should be credited for its pioneering administrative decisions on educational and research policies that rendered such a neuroeducational connection possible. Ninety years later, Jakob’s innovative thinking may still open up new horizons for a neuroscience-informed learning science and interdisciplinarity.

References

Ramón y Cajal S (1906a): Inducciones fisiológicas de la morfología y conexiones de las neuronas. Archivos de Pedagogía y Ciencias Afines (La Plata) 1: 216–236.

